新能源汽车技术标准_新能源汽车技术标准国家新标准

       大家好,今天我来和大家聊一聊关于新能源汽车技术标准的问题。在接下来的内容中,我会将我所了解的信息进行归纳整理,并与大家分享,让我们一起来看看吧。

1.电动汽车强制性国家标准发布 北汽新能源深度参与

2.新能源汽车电驱系统标准解读与拓展:高速耐久

3.课后作业新能源汽车相关技术标准涉及哪些方面?新能源汽车相关技

4.新能源电动汽车用电机及其控制器技术条件

5.2021新能源汽车的主要行驶性能指标有哪些?

6.2022年氢能源汽车产品标准是什么

新能源汽车技术标准_新能源汽车技术标准国家新标准

电动汽车强制性国家标准发布 北汽新能源深度参与

       5月12日,由工业和信息化部组织、中国汽车技术研究中心有限公司牵头、北汽新能源等重点企业参与编制的GB 18384-2020《电动汽车安全要求》和GB 38031-2020《电动汽车用动力蓄电池安全要求》,经国家市场监督管理总局、国家标准化管理委员会批准发布。作为首批电动汽车强制性国家标准,将自2021年1月1日起开始实施。

       北汽新能源作为国内新能源汽车重点企业,连续七年国内纯电动汽车市场的销量冠军,凭借十年间在新能源汽车领域深厚的技术积累和实力储备,深度参与了两项电动汽车强制性国家标准的制定。

       新能源汽车作为国家战略性新兴产业,在最近的十年间,无论是技术水平、产业规模、市场接受度等各方面都取得了突飞猛进的发展。为落实《节能与新能源汽车产业发展规划(2012-2020年)》《汽车产业中长期发展规划》等要求,结合新能源汽车产业发展实际和技术进步需要,工业和信息化部于2016年启动电动汽车安全强标制定工作。电动汽车强标是综合我国电动汽车产业的技术创新成果与经验总结,与国际标准法规进行了充分协调,进一步提高和优化了对电动汽车整车和动力电池产品的安全技术要求。

       在《电动汽车安全要求》中,主要规定了电动汽车的电气安全和功能安全要求,增加了电池系统热事件报警信号要求;强化了整车防水、绝缘电阻及监控要求,以降低车辆在正常使用、涉水等情况下的安全风险;优化了绝缘电阻、电容耦合等试验方法,以提高试验检测精度,保障整车高压电安全。

       《电动汽车用动力蓄电池安全要求》充分考虑了用户的极端使用场景,对应各种极端场景新增了多项测试项目,例如:振动后浸水试验用来验证用户在全生命周期内遇到的内涝环境下,电池包的密封性是否有异常,是否会有绝缘问题发生;过流保护测试模拟充电机故障导致电流超出限值时电池包的安全防护,避免超出电池正常使用条件进而引发安全问题;热扩散试验模拟极端情况下电池包内部某个电池单体出现热失控后,电池系统在5分钟内不起火、不爆炸,同时在《电动汽车安全要求》中增加报警信号要求,能够第一时间给驾乘人员安全提醒为乘员预留安全逃生时间。

       近年来,随着电池和整车技术的进步,新能源汽车续驶里程已不再成为用户痛点,安全问题日益突出,电池热失控成为全行业的技术攻坚。目前,新能源整车企业大多都确立了整车、能耗、充换电、电磁兼容、电池、电机等全技术领域的安全要求、性能要求及试验方法,搭建了科学合理的标准体系。此次两项国家强制性标准的落地,进一步明确了企业责任,将对提升新能源汽车安全水平、保障产业健康持续发展具有重要意义。相信随着国家强制性标准的落地、电池相关技术水平的提升,未来电动汽车的安全性将得到最终解决。

       有业内人士称,两项强制标准反映了国家在新能源汽车产业化过程中,由“政策为主驱动”向“市场为主驱动”逐渐过渡,更加以市场为导向,切实联系用户需求。而这些要求在用户、车企、电池供应商、电芯供应商层面产生的作用和意义将非常深远,会在一定程度上促进我国新能源汽车电池安全以及防撞设计方面的技术进步,并提高我国新能源汽车产品和标准的国际地位。

       作为国内新能源汽车行业的头部企业,北汽新能源在发展过程中,将安全作为电动汽车的重中之重,目前已完成整车电安全企标、测试规范、测试用例的建立与实施。此外,在电动汽车安全标准要求的基础上,通过与多方专业领域专家学者技术交流,汲取国内外相关标准、技术要求和测试规范,针对电动汽车实际应用提出更高更全面的要求,最大限度的保证产品的安全可靠。

       截止目前,北汽新能源连续五年获CACSI中国质量协会“新能源汽车用户满意度第一名”,旗下新能源车型总行驶里程超过121亿公里,相当于已绕地球赤道30万圈,充分验证了其在电动车安全领域的先进性和可靠性。

       去年7月,北汽新能源建成了具有行业标杆意义的新能源汽车试验中心,试验中心建设面积约5万平方米,有88个实验室和400余套国际先进测试设备。其中,电池相关试验设备投入超过1.4亿元,充分保障产品的性能验证。

       未来,北汽新能源将继续优化提高,形成针对充电安全、换电安全、行车安全、操作安全等全场景电安全标准体系和测试规范,不断强化整车开发验证过程中针对电安全的开发与验证,为整车安全保驾护航。

       本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

新能源汽车电驱系统标准解读与拓展:高速耐久

       新能源汽车的自动驾驶技术

       自动驾驶不是新能源汽车的专属技术,但是谈新能源汽车离不开自动驾驶。自动驾驶可分为L0、L1、L2、L3、L4、L5六个等级。中国工信部发布的《汽车驾驶自动化分级》,也把自动驾驶分为0级到5级共六级,与NHTSA/SAE的划分标准基本一致。

       L1/L2级别的自动驾驶汽车早已实现了大规模量产,如我们通常见到的车辆自适应巡航(ACC)、车道保持(LKA)、自动泊车等功能都属于L2级别的典型应用,该级别的辅助驾驶可以一定程度上解放驾驶员的劳动力,但驾驶员仍需时刻准备接管车辆。

       L3级别的定位比较模糊,在行业内争议较大。对于属于这个级别的典型应用场景业内缺乏共识,而且对事故后人车的责任划分没有明确标准。2020年多家车企推出了号称具备L3级别自动驾驶功能的新能源汽车,但是推出的功能大多属于L2级别的应用。基于L3的尴尬定位,奥迪等车企宣布放弃L3,直接研发L4。

       L4级别自动驾驶汽车目前处于测试、示范以及在限定场景下应用的状态。例如,谷歌Waymo已经开始在美国亚利桑那州提供不带安全员的真正“无人驾驶”出租车服务,但属于在限定区域、限定人群的小范围测试。

       L5级别之前业内普遍认为只存在理论上,但特斯拉高调宣布2021年推出L5级别的自动驾驶技术,如果能实现将是颠覆性突破。不过特斯拉坚持采用摄像头+超声波雷达+毫米波雷达作为自动驾驶的感知系统,虽然控制了成本,但效果不佳,近期自动驾驶事故频发,因此市场对特斯拉短期内实现L5普遍持悲观态度。

课后作业新能源汽车相关技术标准涉及哪些方面?新能源汽车相关技

       导语:在动力总成的耐久谱系中,高速耐久性能向来没有缺席,在电动汽车中同样如此,其性能表现与整车驾驶应用工况密切相关。但是,现有的标准中对高速耐久的规范要求鲜有涉及。本文聚焦电驱动系统高速耐久,回答以下几个问题"为什么要做高速耐久","高速耐久的规范要求","高速耐久的失效机理"。

       关于电驱动高速耐久,本文按以下逻辑展开探讨:

       1?为什么要做高速耐久

       2?高速耐久的标准要求

       3?高速耐久的失效机理

       4?展望

       1.?为什么要做高速耐久

       在动力总成的耐久谱系中,高速耐久性能向来没有缺席,其性能表现与整车驾驶应用工况密切相关。以下是某整车可靠性耐久试验项目,可以看到其中高速耐久占很大的比例。

       同时,对比诸多整车厂,高速耐久基本源自于两部分:

强化综合耐久中的高速段

高速耐久循环,一般由两部分组成:XX万公里加减速+XX万公里稳态高速,如下图所示。

       某高速耐久路谱

       三合一电驱动系统作为纯电动汽车动力源,对其高速耐久性能的严格考核固然必不可少,保证动力总成足以应对各种极限应用需求。

       那么,肯定有人疑问,?"做了常规耐久是不是就不用做高速耐久了?""他们的区别究竟是什么?"。

       这就要回到三合一系统高速耐久的特性本身,主要是三点:高速、高的油温、高速下的自激励产生的振动。因此,相比于常规耐久,高速耐久的侧重点略有不同,主要有以下几方面:

       1).?高油温下的轴承、齿轮、油封的失效

       2).?壳体的散热

       3).?高速下自激励产生的振动,对电子元器件的影响

       4).?转自离心力

       5).?减速器冒油、漏油

       具体的失效形式与机理可见本文第4部分。

       关于电驱动传动系统常规耐久的解读,可见历史文章:

新能源电驱系统标准解读与拓展:传动系统疲劳寿命试验(一)

新能源电驱系统标准解读与拓展:传动系统疲劳寿命试验(二)

新能源电驱系统标准解读与拓展:传动系统疲劳寿命试验(三)

       2.?高速耐久标准要求

       在现有标准中,对动力总成高速耐久的规范要求鲜有涉及,本文对简要对以下三个标准做个介绍和解读,为我们后续高速耐久规范的制定提供支撑。

       01《QC/T?1022-2015纯电动乘用车用减速器总成技术条件》

       在《QC/T?1022-2015纯电动乘用车用减速器总成技术条件》中第6.2.4.7中有对高速耐久性能试验的规定,如下:

       解读:

       文中对于试验油温做了要求,这是值得学习的地方,但是,上述要求也无法应用于动力总成系统,这主要是由于:

       1)该标准未明确与整车实际里程寿命的关联;

       2)该标准未强调动态工况,不适用于三合一系统内部的多转速动态工况;

       3)该标准对象为减速器,与动力总成的复杂工况不匹配,如加减速过程等。

       02《GB/T?28382-2012纯电动乘用车技术条件》

       在《GBT?28382-2012纯电动乘用车技术条件》中第4.9中有要求:

       解读:

       这里关于耐久里程的要求保留意见,考虑到标准发布2012年,起草时间可能更早,并不适用于现有市场需求,随着电池技术的大幅发展,整车续航里程的显著提高,相关要求需要提升。即便如此,我们也可以从中读出高速耐久在整个可靠性中的比重要求。

       "性能复测"中对30min的车速要求反映了额定性能,这部分要求可以作为动力总成级别的考核要求。(#关于系统性能和整车的关系,可以见文章《小明想要一辆定制化的电动汽车》#)

       03《GB/T?18388-2005电动汽车定型试验》

       在《GBT?18388-2005电动汽车定型试验》第4.3可靠性行驶试验中有要求:

       解读?:

       从中我们可以看出高速耐久在这个里程寿命的比例,可作参考。而在ISO?19453中,对高速耐久的推荐要求为17%。因此,可以看出关于里程的占比,与目标车型、市场定位、客户群体息息相关,需要我们根据实际应用情况进行设计。

       4.?高速耐久失效机理

       正如第1部分中所述的高速耐久特性:高速、高油温、自激励振动,与其相关的考核对象、失效形式和机理有如下几点:

       1).?高速,意味着轴承、油封、齿轮啮合点具有较高线速度,油液搅动变大,温升加剧,伴随着油液粘度降低,产生巨大剪切力,油液性能变差;而高速重载条件下的齿轮,齿面间压力大,出现齿面接触区局部粘连现象,齿面相对滑动时,较软的齿面沿滑动方向被撕成沟纹,出现胶合。

       2).高速+高油温,意味着转子会产生很大的运转挠度,轴是一个弹性体,当其旋转时,由于轴和轴上零件的材料组织不均匀、制造误差、对中不良等原因,会产生以离心力为表现形式的周期性干扰,从而引起轴的弯曲振动。

       3).?高速+高油温,意味着转子变形,假设电机定转子气隙满足空间要求,转子外径形变导致气隙的变小,在满足安全间隙的条件下,虽然会提高扭矩输出能力,但是由于感应电势的增加,反而可能会导致输出功率的减小,回归整车就是高速性能受损。

       4).?高速+高油温+自激励振动,以离心力为代表的自激励振动产生对系统NVH的影响,加剧了电子元器件抗振能力的考核(可参见ISO?19453-3,搭载在动力总成上,关于振动耐久的解读,可见文章《新能源电驱系统标准解读与拓展:?正弦扫频与随机振动》)。

       5.?展望

       综合上述对高速耐久的理解,以及现有标准的局限性,纯电动汽车三合一动力总成高速耐久建议如下:

       1)依据整车高速耐久工况,对里程数进行加速转化;

       2)增加0到最高车速、常用高速车速切换、高速滑行工况等考核;

       3)加速转化过程中,兼顾油液温度因素影响;

       4)加速转化过程中,兼顾振动因素的考核(#后续会专题解读振动采集与加速折算的内容,敬请期待#)。

       本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

新能源电动汽车用电机及其控制器技术条件

       新能源汽车相关技术标准涉及技术应该说比较多,主要的包括动力电池技术、电机技术、控制技术、电源管理技术和传动耦合技术。每一个技术中又分为详细的技术问题。例如,电池技术中包括正负极材料、隔膜材料、电解质材料、单电池结构、电池堆的组堆技术、和管理电路等等

2021新能源汽车的主要行驶性能指标有哪些?

        新能源电动汽车用电机及其控制器技术条件

1 范围

        本标准规定了电动 汽车 用驱动电机及其控制器通用技术条件。

        本标准适用于电动 汽车 (EV)和混合动力 汽车 (HEV)用的驱动电机及其控制器。

2 引用标准

        下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

        GB 755-200 旋转电机定额和性能

        GB/T 2423.17-1993 电工电子产品基本环境试验规程试验Ka:盐雾试验方法

        GB/T 4772.1-1999 旋转电机尺寸和输出功率等级 第1部分:机座号56 400和凸缘号55 1080

        GB/T 4942.1-1985 电机外壳防护分级

        GB/T 4942.2-1993 低压电器外壳防护等级

        GB 10068.2-2000 轴中心高为56 mm及以上电机的机械振动—振动的测量、评定及限值

        GB 10069.3-1988 旋转电机噪声测定方法及限值噪声限值

        GB/T 12665-1990 电机在一般环境条件下使用的湿热试验要求

        GB/T 12668-1990 交流电动机半导体变频调速装置总技术条件

        GB 14023-2000 车辆、机动船和由火花点火发动机驱动的装置的无线电骚扰特性的限值和测量方法

        GB 1471l-1993 中小型旋转电机安全通用要求

        GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值测量方法

        GB/T 18488.2-2001 电动 汽车 用电机及其控制器试验方法

        GB/T 2900.25-1994 电工术语 旋转电机

        GB/T 2900.26-1995 电工术语 控制电机

        GB/T 2900.33-1993 电工术语 电力电子技术

3 定义

        本标准除采用GB/T 2900.25、GB/T 2900.26、GB/T 2900.33中的定义外,还增加了下列定义。

        3.1 电机控制器 controllers of the electrical machine

        控制主牵引电源与电机之间能量传输的装置、它是由外界控制信号接口电路、电机控制电路和驱动电路组成的。

        3.2 电机及控制器整体效率 overall efficiency of the electrical machine and controllers

        电机转轴的输出功率和控制器的输入功率之比。

        4 工作制和定额

        4.1 工作制

        4.1.1 连续工作制

        电机及控制器在恒定负载下运行至热稳定状态。

        4.1.2 短时过载的周期工作制

        电机及控制器在额定负载下运行时,允许施加周期性过载,过载的倍数及每次过载持续时间、间隔时间以及整个运行时间应在产品标准中规定。

        4.1.3 ISO城市工况及市郊工况

        具体要求制定参照附录B。电动车KD,新能源商用车出口,纯电动SKD,国产电动卡车KD,电动车出口

        4.2 定额

        4.2.1 电机的功率等级

        电机的功率等级为5.5 kW、7.5kw、11 kW、15 kw、18.5 kW、22 kW、30 kW、37 kW、45 kw、55 kw、75 kW、90 kW、110 kW、132 kW、150 kW、160 kW、185 kW、200 kw及以上,并符合GB/T 4772.1的要求。

        4.2.2 控制器输出容量

        15 kVA、35 kVA、50 kVA、60 kVA、100 kVA、150 kVA、200 kVA、270 kVA、300 kVA、360 kVA、420 kVA及以上。

        附录A推荐了在360 V、200 kW及以下单台电动机与控制器输出容量的匹配关系。

        4.3 电源的电压等级

        电机及控制器由牵引电源供电,电源的电压等级为120 V、144 V、168 V、192 V、216 V、24O V、264 V、288 V、312 V、336 V、360 V、384 V、408 V。

        4.4 电机及控制器整体效率

        η=ηc ηm

        式中:η——电机及控制器整体效率;

        ηc——电机控制器的效率;

        ηm——电机的效率。

        根据不同功率等级给出具体产品相应的效率。

5 技术条件

        5.1 温度

        当周围环境温度在-20 +40 时,电机及控制器能长时间连续运行。

        5.2 湿度

        电机及控制器在相对湿度不超过100%的情况下能正常工作,电机及控制器应在其表面温度低于露点的情况下,即电机及控制器表面产生冷凝也能安全工作。

        5.3 盐雾

        作为 汽车 电气设备的产品,应具有一定的抗盐雾能力,并能满足GB/T 2423.17中的有关规定。

        5.4 定频振动和扫频振动

        根据电机及控制器的安装部位,电机及控制器应经受上下、左右、前后三个方向的定频振动试验和上下方向的扫频振动试验。其他方向还需要作扫频振动试验的,应在具体的产品标准中规定。

        5.5 控制器壳体机械强度

        控制器壳体应能承受30 cm 30 cm的面积上加100 kg重力,而不发生明显的塑性变形。

        5.6 防水、防尘

        当淋雨、高压水冲洗时,电机及控制器的构造、安装和通风的方式应保证电机及控制器不出现损坏。电机应符合GB/T 4942.1中IP 55等级,控制器应符合GB/T 4942.2中IPX5产品防护等级要求。

        5.7 温升限值

        电机应采用下级或H级绝缘。采用4.1.2运行条件或4.1.3运行条件和本标准规定的环境条件,

        电机应符合GB 755-2000中7.10规定的温升限值,控制器中各部位的温升应符合GB/T 12668-1990中4.3.15的要求。

        5.8 电机定子绕组冷态直流电阻

        其电阻值在具体产品中规定。

        5.9 电机绕组的匝间绝缘

        应达到GB 14711-1993中9.2.1的要求。

        5.10 电机定子绕组对机壳的绝缘电阻

        在冷态时电机定子绕组对机壳的绝缘电阻值应大于20 MΩ。

        5.11 耐电压

        电机绝缘应具有足够的介电强度,应能承受GB/T 14711-1993中9.1和9.2规定的耐电压试验,无击穿和闪络现象。控制器的各带电电路对地(外壳)和彼此无电连接的电路之间介电强度,应能耐受GB/T 12668-1990中4.3.14所规定的试验电压,持续时间为1 min。电动车KD,新能源商用车出口,纯电动SKD,国产电动卡车KD,电动车出口

        5.12 电压波动

        电机及控制器必须能在电源电压为120%额定电压值下安全承受最大电流。另外,电机在电源电压降为75%额定电压时,应能在最大电流下运行(不要求连续运行)。

        5.13 峰值功率

        按产品规定的持续时间,电机的最大输出功率应达到产品的峰值功率值。

        5.14 堵转转矩和堵转电流

        为保证电动 汽车 在起动时有足够大的起动转矩,要求电机达到产品规定的堵转转矩值,其堵转电流应不大于控制器提供的最大电流值。

        5.15 电机空载转速

        在额客电压时,电机空载运行,其最高转速值应满足产品最高空载转速的要求。

        5.16 噪声

        在正常工作条件下,电机及控制器运行所发出的噪声应符合GB 10069.3的噪声限值要求。

        5.17 振动

        在正常工作条件下,电机的振动应符合GB 10068.2的振动限值要求。

        5.18 安全接地检查

        电机及控制器中能触及的金属部件与外壳接地点处的电阻应不大于0.1Ω。接地导线须用黄/绿相间的双色线。接地点应有明显的接地标志。

        5.19 电机控制器的过载能力

        在额定输出电流下连续工作,允许加非周期性过载,过载的倍数和持续时间在产品中规定。

        5.20 电机控制器的保护功能

        电机控制器应具有过电流、过电压和欠电压的保护功能。

        5.21 馈电要求

        在电机因惯性旋转或被拖动旋转时,电机运行于发电机状态。电机通过控制器应能给125%额定电压的电压源充电。馈电电流的大小和馈电效率在产品指标中规定。

        5.22 最高工作转速

        在额定电压时,电机带载运行所能达到的最高转速。带载的大小和最高工作转速值在产品指标中规定。

        5.23 转速

        电机应能承受1.2倍最高工作转速试验,持续时间为2 min,并能保证其机械不发生有害变形。

        5.24 热态绝缘电阻

        电机在室温,热态和受潮后都应有足够的绝缘电阻值。在湿热试验后其热态绝缘电阻值应不低于GB/T 12665-1990中4.1.1的规定,控制器中各带电电路之间及带电零部件与导电零部件或接地零部件之间的电气间隙和爬电距离应符合GB/T 126G8.2-2000中4.3.13的规定。控制器的带电电路与地(外壳)之间的绝缘电阻在环境温度为40 和相对湿度为95%时,不小于1 MΩ。

        5.25 接触电流

        电机及控制器应具有良好的绝缘性能。在正常工作时,其热态接触电流应不大于5 mA。

        5.26 电机转矩。转速特性及效率

        电机及控制器应达到具体产品要求的转矩。转速特性以及具体产品所提出的效率。

        5.27 电磁兼容性

        5.27.1 电磁辐射

        电机及控制器在运行中所产生的电磁辐射不得超过GB 14023-2000中第4章所规定的辐射干扰允许值。

        5.27.2 电磁辐射抗扰性

        按GB/T 17619-1998中第4章规定的测量方法和表1规定的抗扰性电平进行试验,电机及控制器在正常使用条件下能正常工作。电动车KD,新能源商用车出口,纯电动SKD,国产电动卡车KD,电动车出口

        5.28 耐久性

        在额定负载和额定转速的运行条件下,保证电机及其控制器在第一次使用时的无故障工作时间为3000 h。

        6 常规检验

        每台电机及控制器必须进行以下项目的常规检验。

        6.1 电机空载转速

        6.2 电机定子绕组的冷态直流电阻值

        6.3 电机绕组匝间绝缘

        6.4 控制器壳体机械强度

        6.5 电机定子绕组对机壳的绝缘电阻

        6.6 耐电压

        6.7 堵转转矩和堵转电流

        6.8 噪声

        6.9 电压波动

        6.10 电机控制器的过载能力

        6.11 电机控制器保护功能

        6.12 安全接地检查

7 型式检验

        在产品定型、转产、转厂、停产后复产,结构、材料或工艺有重大改变或合同规定等情况下,应进行型式检验,抽试产品样本数量为2台,如有项目不合格,该项目复检的样本数量应当加倍。重检如仍不合格,则应判定为不合格。检验项目如下。

        7.1 环境试验

        7.1.1 温度、湿度和热态绝缘电阻。

        7.1.2 定频振动和扫频振动。

        7.1.3 盐雾

        7.2 温升

        7.2.1 按4.1.2短时过载周期工作制运行。

        7.2.2 按4.1.3 ISO城市工况及市郊工况要求运行。

        7.3 防水、防尘

        7.4 电机转矩一转速特性及效率

        7.5 馈电

        7.6 最高工作转速

        7.7 超速

        7.8 振动

        7.9 接触电流

        7.10 峰值功率

        7.11 电磁兼容性

        7.12 耐久性

        附录A

        (提示的附录)

单台电动机与控制器输出容量的匹配关系

        附录B

        (提示的附录)

城市工况及市郊工况

        表 B1 基本城市循环

       

        表 B2 市郊循环

2022年氢能源汽车产品标准是什么

       以电力驱动为主要形式的新能源汽车和传统的燃油汽车相比,其外观、车轮与地面的力学过程、转向装置、悬架装置和制动系统基本上是一样的,主要差别是采用了不同的动力系统。燃油汽车的内燃机是利用燃油混合气体在气缸内燃烧做功,推动汽车前行,而电动代是由蓄电池(或其他能量存储装置)提供电能,使电动机旋转产生机械能,驱动汽车前行?

       因此,新能源汽车的操控稳定性、平顺性及通过性与燃油汽车相同,制动性能除了增加再?制动性能外,也与燃油汽车相同,行驶性能的主要差异在于动力性和续驶里程上,而这两方面的性能与蓄电池的性能与特点直接相关。

       小编带大家主要讨论新能源汽车的动力性和续败用?程这两方面的性能。

       一、动力性能

       与传统汽车相同,新能源汽车的动力性能也可以用最高车速、加速性能和最大爬坡度等?指标来描述。但是,由于电动机存在瞬时功率、小时功率和连续功率的概念,所以在性能指?标的理解中需要考虑这一因素,例如,爬坡能力所对应的电动机驱动功率就是运用了电动机的瞬时功率。

       1、最高车速

       最高车速是指在无风条件下,在水平、良好的沥青或水泥路面上,汽车所能达到的最大?行驶速度。按我国的规定,以1.6km长的试验路段的最后500m作为最高车速的测试区,共?往返4次,取平均值,单位为km/h。

       2.加速性能

       加速性能用加速时间来描述,包括汽车的原地起步加速时间和超车加速时间。原地起步?加速时间是指汽车从静止状态下,由第一挡起步,并以最大的加速强度(包括选择最恰当的?换挡时机)逐步换至高挡后,到某一预定的车速所需的时间。常用0~96km所需的时间(秒?数)来评价。超车加速时间,用最高挡或次高挡全力加速至某一高速所需要的时间。加速时?间越短,汽车的加速性就越好,整车的动力性随即提高,单位为秒(s)。

       3.爬坡能力

       爬坡能力用汽车的最大爬坡度来描述。最大爬坡度是指汽车满载时在良好路面上用第一?挡能够爬上的最大坡度。爬坡度用坡度的角度值(以度数表示)或以坡度起止点的高度差与?其水平距离的比值(正切值)的百分数来表示。

       对于电动汽车的动力性能指标,国家标准GB/T18385--2005《电动汽车动力性能试验方?法》对实验条件、车辆准备、车辆状况、试验顺序和试验方法等都做了详细的规定。有兴趣 的读者可以参阅该标准。

       二、续驶里程

       续驶里程这一性能指标对于传统汽车而言,并不是特别重要。因为目前加油站的布局建?设已经比较合理完备,只要及时加油,传统汽车就可以持续行驶。而对于新能源汽车而言,?除了燃料电池汽车外,其他汽车都需要充电,而充电的过程相对较长,充电站的建设布局还不完备,一旦电量用完,就必须回到特定的充电站,用较长的时间进行充电后才可以继续行驶。因此,续驶里程这一指标对于新能源汽车显得尤为重要。

       电动汽车的续驶里程是指电动汽车在其动力电池组充满一次电后,车辆在特定工况下可以连续行驶的最大距离。单位为千米(km)。对于电动汽车而言,续驶里程又分为标定续驶里程和普通工况续驶里程。标定续驶里程是指按照相关国标的规定,车辆加载规定的荷载,在无风、温度适宜的条件下,在平直无坡的硬路面上所能行驶的最大距离。标定续驶里程是国家技术主管部门用于测定电动汽车续驶性能的标准指标,这一指标的高低是判断不同型号电动汽车续驶性能优劣的标准。

       而电动汽车在实际使用中,由于汽车工况和所行驶的路况与标定续驶里程测试时相差很大,所以两者之间有较大差距。例如,电动汽车行驶在下坡较多的路段,其实际续驶里程要大于标定续驶里程,而在上坡占多数的路段,实际续驶里程可能要远小于标定续驶里程。影响电动汽车续驶里程的因素主要有汽车行驶的环境状况、行驶工况、滚动阻力和空气阻力、电池的性能、电动汽车的总质量,以及空调、照明等辅助装置的能量消耗等。

新能源汽车国家标准规定

       涉及三项氢燃料电池相关标准,《绿色交通标准体系(2022年)

       2022年8月18日,交通运输部办公厅发布了《绿色交通标准体系(2022年)》的通知。

       《标准体系》涉及新能源与清洁能源应用、能耗能效、碳排放控制、节能技术与管理等多项节能降碳标准,在氢能和燃料电池方面,节能降碳标准200中包括燃料电池客车技术规范、氢燃料电池公共汽车配置要求,国家节能降碳相关标准中包括:加氢站技术规范(2021年版)。

       解读:

       一、编制背景

       发展绿色低碳交通是交通运输行业加强生态文明建设、服务国家碳达峰碳中和目标,深入打好污染防治攻坚战的重要举措。2016年,交通运输部发布了《绿色交通标准体系(2016年)》,系统推进了80项绿色交通标准的制修订工作,标准供给显著增强。

       加快建设交通强国对绿色低碳交通发展提出了更高要求。为贯彻落实好习近平生态文明思想以及《中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》《中共中央 国务院关于深入打好污染防治攻坚战的意见》《交通强国建设纲要》《国家综合立体交通网规划纲要》《国家标准化发展纲要》等文件关于绿色发展方面的工作部署,系统规划新形势下绿色交通标准制修订任务,交通运输部组织相关单位,在深入分析国际国内绿色标准发展趋势,对照国家碳达峰碳中和、深入打好污染防治攻坚战等工作要求以及交通运输部“十四五”规划体系中涉及绿色交通建设重点任务的基础上,经过多方调研论证,研究编制了《绿色交通标准体系(2022年)》。

       二、编制原则

       坚持目标导向。全面对接推进交通运输行业绿色发展的目标任务,优化完善适应加快交通强国建设的绿色交通标准体系,充分发挥标准的基础支撑作用。

       坚持协调衔接。充分体现人与自然和谐共生的理念,强化标准间相互协调、相互补充,推进交通运输降碳、减污、扩绿和可持续发展,提升交通运输绿色治理能力水平。

       坚持突出重点。在重点领域和关键环节集中发力,加快推进服务碳达峰碳中和目标、深入打好污染防治攻坚战的重点标准供给,以点带面实现突破性进展。

       坚持创新引领。加快科技创新成果转化为标准的进程,促进节能环保新技术、新设备、新材料、新工艺等方面标准的有效供给,保持标准体系建设的适度超前。

       三、体系范围及主要内容

       《绿色交通标准体系(2022年)》范围与2016年版体系一致,主要包括综合交通运输和公路、水路领域与绿色交通发展直接相关的技术标准和工程建设标准。优化交通运输结构、促进绿色交通出行所涉及的综合交通运输和城市客运服务标准,原则上不纳入标准体系。

       标准体系包括5个部分,即100基础通用标准,200节能降碳标准,300污染防治标准,400生态环境保护修复标准,500资源节约集约利用标准。其中,基础通用标准包括术语和绿色低碳评价两个方面;节能降碳标准包括新能源与清洁能源应用、能耗能效、碳排放控制、节能设计与管理,以及核算与监测等五个方面;污染防治标准包括大气污染防治、水污染防治、噪声污染防治、固体废弃物处置和船舶污染物综合排放等五个方面;生态环境保护修复标准包括环境保护技术、生态环境修复、防止外来生物入侵和环境保护修复统计与评价等四个方面;资源节约集约利用标准包括污水再生利用和废旧物循环利用两个方面。

       标准体系共收录242项绿色交通国家标准和行业标准,包括基础通用标准11项,节能降碳标准101项,污染防治标准78项,生态环境保护修复标准35项,资源节约集约利用标准17项。其中,待制定标准47项,待修订标准44项,包括了行业碳排放核算核查、近零碳交通示范区建设、城市绿色货运配送评估、氢燃料电池公共汽车配置、城市轨道交通绿色运营、水下打捞作业防污染技术等重点标准需求。此外,标准体系还列出了与交通运输行业节能降碳、污染物排放和生态环境保护密切相关的国家标准、生态环境行业标准43项,以促进绿色标准的协同实施。

       绿色交通标准体系的修订实施将进一步推动交通运输领域节能降碳、污染防治、生态环境保护修复、资源节约集约利用方面标准补短板、强弱项、促提升,加快形成绿色低碳运输方式,促进交通与自然和谐发展,为加快建设交通强国提供有力支撑。

       为加快汽车产业技术进步,着力培育战略性新兴产业,推进节能减排,近日,财政部、科技部、工业和信息化部、国家发展改革委联合出台《关于开展私人购买新能源汽车补贴试点的通知》(以下简称《通知》),确定在上海、长春、深圳、杭州、合肥等5个城市启动私人购买新能源汽车补贴试点工作。

       《通知》明确,中央财政对试点城市私人购买、登记注册和使用的插电式混合动力乘用车和纯电动乘用车给予一次性补贴。补贴标准根据动力电池组能量确定,对满足支持条件的新能源汽车,按3000元/千瓦时给予补贴。

       插电式混合动力乘用车每辆最高补贴5万元;

       纯电动乘用车每辆最高补贴6万元。

       补贴资金拨付给汽车生产企业,按其扣除补贴后的价格将新能源汽车销售给私人用户或租赁企业。试点期内,每家企业销售的插电式混合动力和纯电动乘用车分别达到5万辆的规模后,中央财政将适当降低补贴标准。

       《通知》指出,试点城市政府是私人购买新能源汽车试点的实施主体和责任主体,要安排一定资金并出台相应配套政策措施,重点对充电站等基础设施建设、新能源汽车购置和使用、电池的报废及回收体系建设等给予支持。

       此外,财政部、国家发展改革委、工业和信息化部还联合下发了《关于印发“节能产品惠民工程”节能汽车推广实施细则的通知》,将发动机排量在1.6升及以下、综合工况油耗比现行标准低20%左右的汽油、柴油乘用车(含混合动力和双燃料汽车)纳入“节能产品惠民工程”,在全国范围内进行推广,中央财政对消费者购买节能汽车按每辆3000元标准给予一次性定额补贴,由生产企业在销售时直接兑付给消费者。

       求采纳为满意回答。

       希望可以采纳,谢谢

       好了,关于“新能源汽车技术标准”的话题就讲到这里了。希望大家能够对“新能源汽车技术标准”有更深入的了解,并且从我的回答中得到一些启示。